Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan-Zhong Jian and Ming Lei*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail:
minglei701@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.036$
$w R$ factor $=0.096$
Data-to-parameter ratio $=17.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(2-Bromobutanoyl)spiro[2H-1,3-benzoxazine-2,1'-cyclohexan]-4(3H)-one

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrNO}_{3}$, synthesized from spiro[2H-1,3-benzoxazine-2,1'-cyclohexan]-4(3H)-one and 2bromobutanoyl bromide, the chair cyclohexane ring in the molecule shows high asymmetric induction in the synthesis of trans β-lactams.

Comment

As we previously reported, the title compound (I) can be used to synthesize trans β-lactams with high diastereoselectivity (Jian et al., 2005). The bulky chair cyclohexane ring in the compound plays an important role in efficient asymmetric induction, which leads to trans β-lactams exclusively.

Received 5 September 2005 Accepted 6 September 2005 Online 14 September 2005

Fig. 1 shows the structure of (I). The compound crystallizes in the monoclinic space group $C 2 / c$ with one molecule in the asymmetric unit. Selected molecular parameters are listed in Table 1; these may be considered normal (Table 1). There are no $\pi-\pi$ stacking or other weak intermolecular interactions in (I), and the crystal packing (Fig. 2) is controlled by van der Waals forces.

Figure 1
The molecule of (I). Displacement ellipsoids are drawn at the 50\% probability level for non-H atoms.

Figure 2
A packing diagram, viewed approximately along the c axis.

Experimental

To a mixture of spiro[2H-1,3-benzoxazine-2, 1^{\prime}-cyclohexan]-4(3H)one ($217 \mathrm{mg}, 1 \mathrm{mmol}$), pyridine ($95 \mathrm{mg}, 1.2 \mathrm{mmol}$) and toluene (10 ml) was added 2-bromobutanoyl bromide ($276 \mathrm{mg}, 1.2 \mathrm{mmol}$) dropwise at $278-288 \mathrm{~K}$. This mixture was stirred at the same temperature for 30 min and then at 298 K for 20 h . The reaction mixture was poured into water $(10 \mathrm{ml})$. The organic layer was washed successively with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$ and brine (5 ml), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was dissolved in 2-propanol (3 ml) at $323-325 \mathrm{~K}$, gradually cooled to 283 K and stirred at the same temperature for 1 h . The resulting crystals were collected, washed with 2-propanol (3 ml) and dried at 313 K for 20 h to afford 300 mg (82% yield) of (I). Colourless crystals were obtained from a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(1: 10 \mathrm{v} / \mathrm{v})$ solution after leaving it to stand for 4 d (m.p. $342-344 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.13(t, J=7.3 \mathrm{~Hz}), 1.29(m, 1 \mathrm{H}), 1.53-2.41(m, 10 \mathrm{H}), 4.98(d d, 1 \mathrm{H}, J=$ 5.2 and 8.8 Hz$), 7.01(m, 1 \mathrm{H}), 7.11(m, 1 \mathrm{H}), 7.55(m, 1 \mathrm{H}), 7.93(m$, 1H). ESI-MS: m/z $366\left([M+1]^{+}\right)$.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrNO}_{3}$
$M_{r}=366.25$
Monoclinic, C2/c
$a=10.9022$ (7) £
$b=17.636$ (1) \AA
$c=16.8688(8) \AA$
$\beta=92.795(2)^{\circ}$
$V=3239.5(3) \AA^{3}$
$Z=8$

Data collection

Rigaku R-AXIS RAPID	3481 independent reflections
\quad diffractometer	2919 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.032$
Absorption correction: multi-scan	$\theta_{\max }=27^{\circ}$
$\quad(A B S C O R ;$ Higashi, 1995)	$h=-12 \rightarrow 13$
$T_{\min }=0.444, T_{\max }=0.600$	$k=-22 \rightarrow 22$
14339 measured reflections	$l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0515 P)^{2}\right.
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.096$
$S=1.07$
3481 reflections
201 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 3$	$1.981(2)$	$\mathrm{N} 1-\mathrm{C} 5$	$1.446(3)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.208(3)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.462(3)$
$\mathrm{O} 2-\mathrm{C} 11$	$1.421(3)$	$\mathrm{N} 1-\mathrm{C} 12$	$1.494(3)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.191(3)$		
$\mathrm{C} 11-\mathrm{O} 2-\mathrm{C} 12$	$118.96(16)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br} 1$	$102.64(16)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 4$	$119.45(17)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$113.07(19)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 12$	$118.42(16)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$109.8(2)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 12$	$119.75(17)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$112.1(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 1$	$106.02(16)$	$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 12$	$109.52(19)$

The methyl groups were constrained to an ideal geometry $[\mathrm{C}-\mathrm{H}=$ $0.96 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$ and were allowed to rotate freely about the $\mathrm{C}-\mathrm{C}$ bonds. The other H atoms were placed in calculated positions, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ and $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$, and included in the final cycles of refinement in the riding-model approximation.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the National Natural Science Foundation of China (grant No. 20272051) and the Teaching and Research Award Programme for Outstanding Young Teachers in Higher Education Institutions of the MoE, People's Republic of China.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Jian, S. Z., Ma, C. \& Wang, Y. G. (2005). Synthesis, pp. 725-730.
Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

